Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Petr Vaňhara

Petr Vaňhara

Masaryk University, Czech Republic

Title: Intact-cell mass spectrometry for mammalian cell identification and authentication

Biography

Biography: Petr Vaňhara

Abstract

Current biomedical research is highly dependent on correct use of cell lines in vitro. There is a constant risk of cell misidentification, cross-contamination or unwanted phenotypic or genetic and epigenetics shifts in in vitro cultures. In human cells, the current golden standard is identification of short tandem repeats (STR) profile in the genome and their comparison with a database of known profiles. This approach can easily distinguish cell lines derived from different individuals, however, in is limited in case of non-human species without a defined database, in case of clones or different cells from the same individual or in case of phenotypic alterations that does not change the STR profile. To obtain DNA-independent authentication tool, we developed, optimized and performed the MALDI-TOF MS of intact cells selected for various levels of intrinsic heterogeneity - human embryonic kidney (HEK293), mouse embryonic fibroblasts, human and mouse embryonic stem cells and primary cells from ovarian follicles of BALB/c and C57BL/6 mouse strains. Then, by rigorous statistical evaluation of the method robustness with respect to both technical and biological variability, we demonstrated that specific fingerprints of mammalian cells can be easily obtained with defined intra- and inter-instrumental overall reproducibility. Moreover, MS followed by advanced cluster analysis, revealed tiny phenotypic shifts in morphologically indistinguishable human embryonic stem cells induced to differentiation or undergoing silent phenotypic shifts in culture. In summary, intact cell MS represent a powerful tool for identification, authentication and phenotypization of cells in various applications, ranging from biomedical research, cell therapy to bioindustry.