Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Tatsuya URABE

Tatsuya URABE

Nishina center for Accelerator-Based Science, RIKEN, Saitama, Japan

Title: Introduction of liquid samples into high-vacuum plasma ion source for low-cost quantification of inorganic elements

Biography

Biography: Tatsuya URABE

Abstract

We have been developing a mass spectrometer based on plasma ion source, ECRIS (Electron Cyclotron Resonance Ion Source). Although ECRIS is known as a large-sized ion source in accelerator facility, we succeeded to miniaturize and mount it on a portable mass spectrometer (called “miniECRIS-MS”) for detecting gas compounds1). The miniECRIS-MS contains a permanent magnet for an ion source, ion optical system, quadrupole mass analyzer and so on. In this poster session, we will present our ongoing project for quantifying elements in liquid samples. Comparing gas samples, liquid sample introduction into high vacuum plasma (i.e. ECRIS) is troublesome. However, it can offer great advantages over present analytical methods such as ICP-MS in terms of stability, sensitivity, freedam from polyatomic (spectral) interence, initial/running costs, and portability. Details of sample introduction system are as follows. Electrospray is used as a splaying unit of liquid samples at first stage.The solutions containing the analyte of interest are electrosprayed and gradually desolvated with the aid of heated assist gas at atmospheric pressure. Then, sample aerosol was introduced into ECRIS through differential pumping systems. Since analytes of interest are charged by electrospray (as relatively large clusters), they can be electrically extracted by ion lenses such as ion funnel in the pumping system. And they are finally reached at ECRIS and ionized (decomposed) into monvalent atomic ions for quantitative purpose. By this system some solvents (water and methanol) and inorganic elements (Na) were successfully observed, and the potential of miniECRIS-MS will be discussed in the session.