Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Vasile I. Furdui

Vasile I. Furdui

Ontario Ministry of the Environment and Climate Change, Canada

Title: Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters

Biography

Biography: Vasile I. Furdui

Abstract

The reliable analysis of highly toxic hexavalent chromium, Cr(VI), at ultra-trace levels remains challenging, given its easy conversion to non-toxic trivalent chromium. The new approach demonstrates a novel analytical method to quantify Cr(VI) at low ng/L concentration levels in environmental water samples by using speciated isotope dilution (SID) analysis and double-spiking with Cr(III) and Cr(VI) enriched for different isotopes. Ion chromatography tandem mass spectrometry (IC-MS/MS) was used for the analysis of Cr(VI) as HCrO4- → CrO3-. While following a classical linear multipoint calibration curve a method detection limit (MDL) of 7 ng/L Cr(VI) was achieved, the modified SID-MS method adapted from U.S. EPA 6800 allowed for the quantification of Cr(VI) with an MDL of 2 ng/L and provided results corrected for Cr(VI) loss occurred after sample collection. The adapted SID-MS approach proved to yield more accurate and precise results than the multipoint calibration method, allowed for compensation of Cr(VI) reduction during sample transportation and storage while eliminating the need for frequent external calibration. The SID approach permitted continuous sample analysis for several days without the need for recalibration. This new developed IC-MS/MS method represents an alternative to the routinely used inductively-coupled plasma (ICP) instrumentation, IC-ICP-MS, and offers several advantages over detection with ICP-MS for Cr(VI), such as the absence of polyatomic interferences of 52Cr formed in the ICP (36Arl6O, 40Ar12C, 35Cl16OH, and 37Cl14NH) that require the use of dynamic reaction/collision cells or high-resolution double-focusing sector field instruments.